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SUMMARY

A coupled numerical method for the direct simulation of shallow water dynamics and pollutant transport
is formulated and implemented. The conservation equations of shallow water dynamics equations and the
convection–diffusion equations are solved using the lattice Boltzmann (LB) method. The local equilibrium
distribution of the pollutant has no terms of second order in flow velocity. And the relaxation time of the
pollutant deviates from a constant for the flows with variable free surface water depth. The numerical tests
show that this scheme strictly obeys the conservation law of mass and momentum. Excellent agreement
is obtained between numerical predictions and analytical solutions in the pure diffusion problem and
convection–diffusion problem. Furthermore, the influences on the accuracy of the lattice size and the
diffusivity are also studied. The results indicate that the variation in the free surface water depth cannot
affect the conservation of the model, and the model has the ability to simulate the complex topography
problem. The comparison shows that the LB scheme has the capacity to solve the complex convection–
diffusion problem in shallow water. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last two decades research on methods of solution to the shallow water equations has received
considerable attention. The shallow water equations have wide applications in ocean and hydraulic
engineering: tidal flows in estuary and coastal water regions; bore wave propagation; the stationary

∗Correspondence to: Ping Huang, Department of Environmental Science, School of Environmental Science and
Engineering, Sun Yat-sen University, Guangzhou 510275, China.

†E-mail: eeshping@mail.sysu.edu.cn, phph888@163.com

Contract/grant sponsor: Research Fund for the Doctoral Program of Higher Education; contract/grant number:
20060558060

Copyright q 2008 John Wiley & Sons, Ltd.



196 Y. LI AND P. HUANG

hydraulic jump; and river, reservoir, and open-channel flows. Recently, prediction of a pollutant
transport in flows is a newness and an important subject in many industrial and environmental
projects. Hence, simulation of pollutant transport in shallow water is receiving more and more
attention.

In the last decade the lattice Boltzmann method (LBM) has been successfully applied to the
analysis of a variety of complex physical phenomena, such as turbulent flow [1–3], natural convec-
tion [4], multi-component flows [5–7], and multi-phase flows [8]. Besides, some less complicated
phenomena such as shallow water dynamics and convection–diffusion problem have also been
studied [9–16]. Unlike conventional numerical methods based on discretization of macroscopic
equations, LBM is based on microscopic model and mesoscopic kinetic equations [17, 18].

However, the coupled shallow water dynamics and convection–diffusion have hardly been
studied. This is probably due to the vast reservoir of alternative finite element, finite difference,
and finite volume schemes for solving the convection–diffusion problem. Hence, in this paper we
investigate whether the LB methodology can be extended to the pollutant-shallow water system.

In earlier research, Shan [19] carried out numerical simulations of the Rayleigh–Benard convec-
tion by using the previously developed two-component LBM. He et al. [20] also developed a novel
thermal LBM model based on a similar approach, in which an independent distribution function
for internal energy is introduced to simulate the temperature field. In both models, however, the
equilibrium distribution function for the temperature contains the terms of second order in flow
velocity. Since the convection–diffusion equation has no terms of second order in flow velocity,
it is sufficient to take account of the terms up to first order in flow velocity [21]. Inamuro et al.
[22] present a simplified LBM to simulate fluid flows with heat and mass transfer and found that
the model can be obtained with relative errors of the same order as the lattice spacing. However,
in the practical water environment, the free surface water depth should be considered. Hence, in
this paper a modified LBM is proposed for the convection–diffusion process with variation in free
surface water depth in the shallow water.

A coupled lattice Boltzmann method (CLBM) for the pollutant-shallow water system is formu-
lated and implemented using the modified local equilibrium distribution for pollutant convection
and diffusion in this paper.

In the numerical computation, the CLBM scheme is firstly used to solve the 1-D and 2-D pure
diffusion problems. Subsequently, the same framework is applied to the 1-D and 2-D convection–
diffusion problem in 1-D and 2-D steady flow. The influences on the accuracy of the lattice size
and the diffusivity are also studied.

2. GOVERNING EQUATIONS

The 2-D shallow water equations with source terms of bed slope and bed friction and the
convection–diffusion equation may be expressed in tensor notation as
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Figure 1. Definition sketch for bed topography.
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where � is the free water surface elevation above a fixed reference water level; h=H+� is the
total water depth with H being the partial depth between the fixed reference level and the bed
surface (see Figure 1); i and j are indices and the Einstein summation convention is used, i.e.
repeated indices mean a summation over the space coordinates; xi is the Cartesian coordinate; ui
is depth-averaged velocity component in the i direction; g is the acceleration due to gravity; t is
the time; c is the concentration-averaged; g=9.81m/s2 is the gravitational acceleration; � is the
kinematic viscosity; and D is the coefficient of diffusion.

Si = Sbi −S f i (4)

Sbi =−gh
�zb
�xi
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Sc=−Khc+S0h (7)

where zb is the bed elevation above the datum; n is the Manning coefficient at the bed; K is the
attenuation coefficient; and S0 is the source term.

3. COUPLED LATTICE BOLTZMANN METHOD

3.1. LBM for the flow field

According to the theory of the LBM, it consists of two steps: a streaming step and a collision step
[23]. The collision operator � is replaced with the single relaxation time � under the Bhatnagar–
Gross–Krook (BGK) approximation. Usually, with the BGK approximation [24] these two steps
can be combined into the following lattice Boltzmann (LB) equation using the 9-speed square
lattice shown in Figure 2:

f�(xi +e��t, t+�t)− f�(xi , t)=−1

�
( f�− f eq� )+ �t

N�e2
e�F�(xi , t) (�=0–8) (8)
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Figure 2. Discrete lattice and the trajectory of particles.

where f� is the distribution function of particles; f eq� is the local equilibrium distribution function;
e=�x/�t ; �x is the lattice size; �t is the time step; F� is the component of the force in the �
direction; � is the single relaxation time; e� is the velocity vector of a particle in the � link; and
N� is a constant, which is decided by the lattice pattern as

N� = 1

e2
∑

e�e� =6 (9)

The physical variables, the water depth h and the velocity u, are defined in terms of the
distribution function as
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The local equilibrium distribution f eq� for the shallow water equations is expressed as [9, 10]

f eq� =
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where i and j are indices and the Einstein summation convention is used, i.e. repeated indices
mean a summation over the space coordinates; the Kronecker delta �i j is �i j =1 if i= j and �i j =0
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if i �= j . Hence, the local equilibrium function (12) satisfies the following conditions:∑
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By applying the Chapman–Engkog procedure [25] and multi-scaling expansion, it can be shown
that the solution to the LB equation (8) with the physical variables (10) and the equilibrium function
(12) results in the solution to the shallow water equations (1) and (2) with

F�(xi , t)=−gh
�zb
�xi

−S f i , �= �t

6
(2�−1)e2 (16)

The time scale �t should be chosen such that the ratio U/e�1 is small enough to define a stable
LB scheme. Here, U is the typical velocity of the flow.

3.2. LBM for the pollutant field

The local equilibrium distribution function for the convection–diffusion of contamination is
defined as
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Therefore, the distribution function of particles for pollutant can be calculated using the following
equation:

g�(xi +e�i�t, t+�t)−g�(xi , t)=− 1

�∗
c
(g�−geq� )+�t ·Sc�(xi , t) (18)

For the pollutant in shallow water with variable water depth, the relaxation time may deviate from
a constant according to

�∗
c = 1

2 +h(xi , t) ·(�c− 1
2 ) (19)

Sc�(x, t) is defined as
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where w0= 4
9 ,w� = 1

9 for �=1,3,5,7 and w� = 1
36 for �=2,4,6,8. With Equation (20) we have∑
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The pollutant concentration c is defined as

c= 1

h

∑
�
g� (22)

By applying the multi-scaling expansion, it can be shown that the solution to the LB equation (18)
with the equilibrium function (17) results in the solution to the convection–diffusion equation (3)
with the coefficient of diffusion defined as (see Appendix A)

D= �t

6
(2�c−1)e2 (23)

3.3. Boundary condition

The inflow and outflow boundary conditions for the flow field can be decided with the method
described by Zou and He [26], using the given velocity, depth, and concentration to obtain the
unknown distribution function at the boundary. For example, given the velocity at the inflow
boundary, after streaming, the unknown f1, f2, and f8 (see Figure 2) can be expressed as
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For the inflow and outflow boundary conditions for the pollutant field, we use the extrapolation
method proposed by Guo et al. [27]. The basic idea of the extrapolation method is to decompose
the distribution function g� on the boundary node xb into its equilibrium and non-equilibrium
parts:

g�(xb, t)=geq� (xb, t)+gneq� (xb, t) (27)

The non-equilibrium term gneq� represents the deviation from the equilibrium, which should be
small (|gneq� |�|geq� |). Hence, it is reasonable to assume that gneq� =�tg(1)

� . Thus,

gneq� (xb, t)=gneq� (x f , t)+O(�t2)=g�(x f , t)−geq� (x f , t)+O(�t2) (28)

where x f is the nearest neighbour fluid node of xb.
If the concentration on the boundary node xb is known, the unknown concentration distribution

is given as

g�(xb, t)=geq� (xb, t)+g�(x f , t)−geq� (x f , t) (29)

Alternately, if the concentration gradient is known on the boundary node xb, g�(xb, t) is given as
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For the solid boundary condition, no-slip or slip boundary conditions are applied in the flow field
and slip boundary condition is applied in the pollutant field. For the no-slip condition, the standard
bounce-back scheme can be used. For the slip condition, a zero gradient of the distribution function
normal to the solid wall can be used [28, 29].

4. NUMERICAL ANALYSIS

4.1. Pure diffusion tests

In this section the coupled LBM is used to solve the 1-D and 2-D pure diffusion problems. The
accuracy is demonstrated by comparing numerical predictions with analytical solutions or finite
difference solutions.

4.1.1. 1-D uniform concentration with variation in water depth. An 10m long 0.5m wide resting
rectangle channel with water level �=1m, velocity of flow u=0m/s, and the concentration c=
1mg/L is presented for this example. The sketch of the channel is shown in Figure 3. As the initial
concentration is uniform, the concentration will remain uniform as the time increases (c≡1mg/L).
In the numerical computations, e=10m/s, D=0.01m2/s (�c=0.53), �x=�y=0.1m, �t=0.01s
were used. Figure 4 shows the numerical solution to the concentration. After 1000 time steps, the

= 1m

10m

free surface

0.1m

Figure 3. Sketch of the channel with variation in the bottom slope.

0.9

0.95

1

1.05

1.1

0 1 2 3 4 5 6 7 8 9 10

x(m)

C
(m

g/
L

)

Numerical concentration

Theoretical concentration

Figure 4. Initial uniform concentration: comparison of concentration.
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concentration is still uniform with c=1mg/L. This suggests that the variation in the free surface
water depth cannot affect the conservation of the model.

4.1.2. 1-D pure diffusion test. A 1-D pure diffusion problem in an 8m long 0.5m wide resting
rectangle channel with 1 g pollutant instantaneously (0.02s) added into the middle of the channel
is defined as [30]

c= m

A
· 1√

2��
e−(x−x0)2/2�2 (32)

where m=10g is the mass of the pollutant; x0=4m is the location where the contamination is
added into the channel; A is the area of the channel cross section, �2=2Dt with D being defined
using Equation (23).

The global relative error R is defined as

R=
√∑

i |ci −cai |2√∑
i |cai |2

(33)

where ci and cai are the numerical computation solution and the analytical solution, respectively.
The cases of the water depth h=1 and 2 were calculated. In the numerical computations,

e=5m/s, x0=4m, �=0.51. To test the effect of the lattice size on the solutions, three lattices �x=
�y=0.2m, �t=0.04s, D=0.02m2/s (�c=0.56); �x=�y=0.1m, �t=0.02s, D=0.02m2/s
(�c=0.62); and �x=�y=0.05m, �t=0.01s, D=0.02m2/s (�c=0.74) were used in the initial
computations. The 1-D diffusion can be guaranteed in the 2-D code by specifying slip boundary
conditions at the sidewalls. The results of t=2 and 5s are depicted in Figure 5, showing good
agreement with the analytical solution. Further quantitative comparison with the analytical solution
indicates that in the process of the diffusion the relative error becomes smaller with R=2.19e−2
at t=2s, h=1m and R=1.51e−2 at t=5s, h=1m. Figure 6 shows the comparison between
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Figure 5. 1-D pure diffusion: comparison of concentration at 2 and 5 s (h=1 and 2m).
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Figure 6. 1-D pure diffusion: comparison of concentration based on different lattices sizes.
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Figure 7. 1-D pure diffusion with varying bottom slope: comparison of
concentration at 10 s (�=1 and 2m).

numerical results based on different lattice sizes, showing that there is little difference. Further
comparison indicates that the lattice �x=0.05m has most accuracy with R=9.8e−3 in �x=
0.05m, R=1.51e−2 in �x=0.1m, and R=3.14e−2 in �x=0.2m.

4.1.3. 1-D pure diffusion test with variation in water depth. This example changes the initial
condition of the example in Section 4.1.1 to c=0mg/L. And 1 g pollutant was instantaneously
(0.01s) added into the middle of the channel. The velocity of flow is u=0m/s. The cases of the
water level �=1 and 2 were calculated. In the numerical computations, e=10m/s, D=0.02m2/s
(�c=0.56), �x=�y=0.1m, and �t=0.01s were used. The results after 1000 time steps (t=10s)
compared with the solutions to central difference finite difference method (CD-FDM) are shown
in Figure 7. They are in good agreement. This suggests that the model has the ability to simulate
complex topography problem.
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4.1.4. 2-D pure diffusion test. A 2-D pure diffusion problem in a 4m×4m, 2m deep quiet pool
with pollutant added instantaneously (0.02s) into the center of the pool is defined as [30]

c= m

h
· 1

2��2
e−[(x−x0)2+(y−y0)2]/2�2 (34)

where m=10g, x0=0, y0=0, and other parameters have the same meaning as Equation (32).
In the numerical computation, �x=�y=0.1m, �t=0.02s, e=5m/s, x0=2m, �=0.52, and

D=0.015m2/s (�c=0.59). The results of t=10s is depicted in Figure 8. The maximal absolute
error is 0.0783mg/L with the maximal numerical solution Cmax being 5.30mg/L, and the global
relative error R is 9.3e−3. In addition, the smaller the lattice size used, the better the accuracy
obtained (R=2.0e−3 in the lattice �x=�y=0.05m).

Further comparison of the lattice size and different diffusivity are presented in Table I. The
smaller the lattice size and the larger the diffusivity used, the better the accuracy obtained. In
Table I we can observe relatively good accuracy when dx/D<10.

Y
(m

)
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t=10s LBM solution
t=10s analytical solution
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Figure 8. 2-D pure diffusion: comparison of concentration at 10 s.

Table I. 2-D pure diffusion: comparison of relative error for different lattice size and different diffusivity.

Error R

�x (m) e (m/s) dt (s) D=0.005 D=0.01 D=0.02

0.2 5.0 0.04 1.154e−1 5.88e−2 2.91e−2
0.1 5.0 0.02 2.99e−2 1.45e−2 8.0e−3
0.05 5.0 0.01 7.3e−3 3.3e−3 1.1e−3
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4.2. Convection–diffusion tests

4.2.1. 1-D convective-diffusion problem with pollutant instantly discharging. In a 80m×5m flat
channel with upriver discharge Q=5.69m3/s and downriver water depth h=1.52m, 50 g non-
degradable contamination is instantly discharged into the location x0=10m. This problem can be
defined as [30]

c= m

A
· 1√

2��
e−(x−x0−ut)2/2�2 (35)

The parameters have the same meaning as Equation (32).
In the numerical computations, �x=�y=1m, �t=0.1s, e=10m/s, �=0.53, D=0.4m2/s

(�c=0.62), and n=0.01. Figure 9 shows the discharge comparison of the numerical solution
and theoretical solution. The result shows excellent agreement with R<1e−5. A comparison of
the numerical results with the analytical solution at t=20, 40, and 60s is shown in Figure 10,
showing good agreement. With increasing time, the relative error becomes larger. R=1.69e−2 at
t=20s, R=1.89e−2 at t=40s and R=2.51e−2 at t=60s. This may be related to the maximum
concentration becoming smaller as the time increases. Further calculation shows that the maximum
absolute error is smaller than 0.0127mg/L and the maximum computational concentration is
0.645mg/L. The present method can provide good accuracy in the convective-diffusion problem.

4.8

4.9

5

5.1

5.2

0 10 20 30 40 50 60 70 80

L(m)

Q
(m

3 /L
)

 Numerical solution
 Theoretical solution

Figure 9. 1-D convective-diffusion: comparison of the discharge.
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Figure 10. 1-D convective-diffusion: comparison of the concentration at 20, 40 and 60 s.
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Figure 11. 1-D convective-diffusion: the relative error for different hydraulic boundary condition.
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Figure 12. 2-D convection–diffusion: the concentration distribution at different times.
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Figure 13. 2-D convection–diffusion: comparison of the concentration at different times.
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Figure 11 shows the numerical relative error for different hydraulic boundary conditions. The
results are linear. From the rule of the results we can see even when umax/h=1(1/s), the relative
error will be less than 3e−2. Hence, the results show high accuracy of the model.

4.2.2. 2-D convection–diffusion in 1-D flow. (1) Instant source: Hundred gram of pollutant was
instantly added into the channel. The water depth is 1m; the velocity is 1m/s. �x=�y=5m,
e=10m/s, �=0.52, and D=0.75m2/s (�c=0.545). The results of t=40,100, and 160s are
shown in Figure 12. Comparison with the analytical solution is presented in Figure 13. We can
see the results accord with the convection–diffusion law. The results show that the model has good
accuracy for the 2-D convection–diffusion.

(2) Continuum source: In this example, a pollutant discharge outlet is in the side of the channel
with a discharge amount of 100g/s. The discharge per unit width of q=1m2/s was imposed
at the inflow and h=1.52m was specified at the downstream end. e=10m/s, �=0.53, n=0.01,
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Figure 14. 2-D convection–diffusion: comparison of the concentration for different relaxation times.
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Figure 15. Initial concentration surface with u=1m/s and v=1m/s.

Figure 16. Predicted concentration surface at t=10s.

Figure 17. Predicted concentration surface at t=20s.
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Figure 18. Comparison of concentration with u=1m/s and v=1m/s at 10 s.
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Figure 19. Comparison of concentration with u=1m/s and v=1m/s at 20 s.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:195–213
DOI: 10.1002/fld



210 Y. LI AND P. HUANG

K =0.1/864001/s, and �x=�y=5m. To test the effect of the diffusivity on the solutions,
D=0.5m2/s (�c=0.53), D=1m2/s (�c=0.56), and D=2m2/s (�c=0.62) were used in the
initial computations. Comparisons between numerical results and analytical solution are depicted
in Figure 14, showing that there is little difference and the major difference is near the pollutant
discharge outlet. Further comparison indicates that the larger the diffusivity, the less the difference
from the analytical solution. The results suggest that the model is accurate in this problem.

4.2.3. 2-D convection–diffusion in 2-D flow. Simulating pollutant transport and diffusion in a
60�x×60�y square with the water depth of 1m, the velocity u=1m/s and v=1m/s. �x=�y=
1m, e=10m/s, �=0.52, D=0.2m2/s (�c=0.56). Ten gram of pollutant was instantly added into
the test domain located at x=20m and y=20m. The initial concentration distribution surface is
shown in Figure 15. The results of t=10 and 20s are shown in Figures 16 and 17, respectively.
Figures 18 and 19 compare the computed concentration profiles with analytical solutions. The
results show that the model has good accuracy for the 2-D convection–diffusion in 2-D flow.

5. CONCLUSION

A coupled LB model for the flow-pollutant system has been presented. The local equilibrium
distributions proposed for the pollutant field are presented in a simplified form with no terms of
second order in flow velocity. The relaxation time of the pollutant deviates from a constant for the
flows with variable free surface water depth.

Numerical simulations of the 1-D and 2-D pure diffusion problems were carried out to test the
model. The numerical results agreewellwith the analytical solution. The numerical results for the 1-D
and 2-D convection–diffusion problems show good agreement with the analytical and high accuracy
of the model. Influences on the accuracy of the lattice size and the diffusivity are also studied.

The uniform results of concentration in a varying water depth channel with uniform initial
concentration indicate that the varying of the free surface water depth cannot affect the conservation
of the model, and comparison with finite difference method indicates that the model has the ability
to simulate complex topography problem.

The present CLBM can be used to solve the more complex practical problem and easily extended
to the 3-D model. Such an extension and applications will be considered in future studies.

APPENDIX A: CALCULATING THE COEFFICIENT OF DIFFUSION

The local equilibrium distribution function for the convection–diffusion of contamination is
defined as

geq� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ·
(
h− 5

9

)
(�=0)

c ·
(
1

9
+ h

3e2
e�i ui

)
(�=1,3,5,7)

c ·
(

1

36
+ h

12e2
e�i ui

)
(�=2,4,6,8)

(A1)
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Therefore, the distribution function of particles for contamination can be calculated using the
following equation:

g�(xi +e�i�t, t+�t)−g�(xi , t)=− 1

�∗
c
(g�−geq� )+�t ·Sc�(xi , t) (A2)

The pollutant concentration c is defined as

c= 1

h

∑
�
g� = 1

h

∑
�
geq� (A3)

We unfurl Equation (A2) by the Taylor expansion

�t

[
�
�t

+(e� ·∇)

]
g�+ �t2

2

[
�
�t

+(e� ·∇)

]2
g�+O(�t3)=− 1

�∗
c
[g�−geq� ]+�t ·Sc� (A4)

By applying the Chapman–Engkog procedure and multiple scales expansion [25]
g� =geq� +�·g(1)

� +�2g(2)
� +·· · (A5)

�
�t

= �
�t1

+�
�

�t2
(A6)

where � is the Knudsen number, a small number in the same order as �t . We assume that �=�t .
The above expansion assumes that the time scale t2 is much slower than the time scale t1 [17].
Substituting Equations (A5) and (A6) to Equation (A4), we have the � order equation[

�
�t1

+(e� ·∇)

]
geq� =− 1

�∗
c
g(1)
� +Sc� (A7)

By using Equation (A7), we can have the �2 step equation

�
�t2

geq� +
[

�
�t1

+(e� ·∇)

]
g(1)
� + 1

2

[
�

�t1
+(e� ·∇)

]2
geq� =−g(2)

�

�∗
c

(A8)

Considering Equation (A3) and
∑

1/�∗
c(g�−geq� )=0, we have the following equations:

∑
�

1

�∗
c
g(n)
� =0,

∑
�

1

�∗
c
e� ·g(n)

� =0 (n=1,2 . . .) (A9)

Considering Equations (12) and (A1), we can obtain

∑
�
e2�g

eq
� = 1

3
e2c (A10)

Calculating (A7) + � × (A8)[
�

�
�t2

+ �
�t1

+(e� ·∇)

]
geq� −�

[
�

�t1
+(e� ·∇)

][
�∗
c

(
�

�t1
+e� ·∇

)]
geq�

+ �

2

[
�

�t1
+(e� ·∇)

]2
geq� +

[
�

�t1
+(e� ·∇)

]
(��∗

c Sc�)=−g(1)
� +�g(2)

�

�∗
c

+Sc� (A11)
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Applying Equation (19) to Equation (A11)
[
�

�
�t2

+ �
�t1

+(e� ·∇)

]
geq� −

[
�

�t1
+(e� ·∇)

][
�h

(
�c− 1

2

)(
�

�t1
+e� ·∇

)]
geq�

+
[

�
�t1

+(e� ·∇)

]
(��∗

c Sc�)=−g(1)
� +�g(2)

�

�∗
c

+Sc� (A12)

Then we sum up Equation (A12) with Equations (A3), (A9), (21), and (A10)

�(hc)

�t
+ �(hu j c)

�x j
= �

�t1

∑
�

[
�h

(
�c− 1

2

)(
�

�t1
+e� ·∇

)
geq�

]
+∇ ·∑

�

[
�h

(
�c− 1

2
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e�

�geq�
�t1
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− �
�t1

∑
�

(��∗
c Sc�)+∇

[
�he2

3

(
�c− 1

2

)
∇(c)

]
+Sc (A13)

The first three terms on the right-hand side of Equation (A13) are small compared with the fourth
term as �t1 is smaller than �t2 and �xi [13]. Therefore, they are treated as truncation errors. The
closer �c is to 1

2 , the smaller the truncation. Then we have

�(hc)

�t
+ �(hu j c)

�x j
= �

�x j

[
�he2

3

(
�c− 1

2

)
�c
�x j

]
+Sc (A14)

Then it results in the solution to convection–diffusion equation (3):

�(hc)

�t
+ �(hu j c)

�x j
= �

�x j

(
Dh

�c
�x j

)
+Sc (A15)

where the coefficient of diffusion

D= �t

6
(2�c−1) ·e2 (A16)
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